
144 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

NUMA-AWARE REAL-TIME WORKLOADS

Syed Afraz Ali

(https://orcid.org/0009-0001-6872-6786)

Abstract:
Non-Uniform Memory Access (NUMA) is a computer memory design used in multiprocessing,

where the memory access time depends on the memory location relative to the processor. With the

advent of multi-core processors and complex applications, managing real-time workloads

efficiently on systems with multiple NUMA nodes has become increasingly important. This paper

provides a comprehensive analysis about "NUMA- Aware Real-Time Workloads". It covers

various aspects of managing real-time workloads on systems with multiple NUMA nodes,

including the importance of NUMA-aware resource isolation, in-depth deployment patterns, use

cases, and associated caveats. The paper discusses the tools and strategies for effective NUMA-

aware resource isolation, such as CPU pinning, memory binding, and workload placement

strategies. It also explores various deployment patterns, their use cases, and the challenges

associated with implementing NUMA-aware strategies. The paper concludes by summarizing the

vital role of NUMA-aware resource isolation and deployment patterns in optimizing the

performance of real-time workloads and highlights the need for careful planning, ongoing

attention, rigorous testing, performance monitoring, and iterative adjustments. This analysis aims

to provide insights and recommendations for organizations looking to optimize the performance of

their real-time applications while managing the inherent complexities associated with NUMA-

aware resource isolation.

Keywords:

NUMA, Non-Uniform Memory Access, real-time workloads, resource isolation, CPU pinning,

memory binding, workload placement, deployment patterns, load balancing, data locality

optimization, thread and core affinity, dynamic resource management, scheduling policies,

financial trading systems, online gaming servers, telecommunications, industrial automation,

robotics, aerospace applications, defense applications, medical imaging, healthcare, video

streaming, content delivery, autonomous vehicles, high-performance computing, telemedicine,

remote collaboration, performance variability, deadlocks, platform-specific considerations,

hardware architecture, system configuration, memory access, latency, contention, performance

optimization, system management, maintenance overhead.

1. Introduction

The rapid advancement in computing technology has led to the development of multi-core

processors and complex applications that demand efficient management of real-time workloads.

One critical aspect of this management is the Non-Uniform Memory Access (NUMA) architecture,

a computer memory design used in multiprocessing systems. This introduction aims to provide a

background on NUMA and discuss the importance of NUMA-aware resource isolation in

managing real-time workloads.

1.1 Background on NUMA

In a NUMA system, multiple processors, or nodes, are connected to a shared memory, and each

processor has its local memory. The time it takes for a processor to access memory depends on the

memory location relative to the processor. Accessing local memory (memory attached to the

processor) is faster than accessing remote memory (memory attached to another processor). This

https://orcid.org/0009-0001-6872-6786

145 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

design contrasts with the Uniform Memory Access (UMA) architecture, where all processors

access the memory with uniform latency. NUMA architecture aims to overcome the scalability

limitations of UMA by providing processors with faster access to local memory while still

allowing access to remote memory when necessary.

1.2 Importance of NUMA-Aware Resource Isolation

Managing real-time workloads efficiently on systems with multiple NUMA nodes is crucial for

applications that require timely and predictable performance. Real-time workloads, such as

financial trading systems, online gaming servers, and autonomous vehicles, demand consistent low

latency and high throughput. NUMA-aware resource isolation involves assigning tasks to specific

CPU cores and memory regions to minimize data movement between NUMA nodes, thereby

reducing latency and improving performance. Tools like CPU pinning, memory binding, and

workload placement strategies can help achieve effective NUMA-aware resource isolation for real-

time tasks. Implementing NUMA-aware strategies can significantly enhance the efficiency and

responsiveness of real-time applications by minimizing memory latency, reducing contention, and

ensuring predictable execution times for critical tasks. However, it also introduces complexities in

system configuration, management, and maintenance, which require careful planning and ongoing

attention. Ultimately, NUMA-aware resource isolation plays a vital role in optimizing the

performance of real-time workloads within systems with multiple NUMA nodes.

2. NUMA-Aware Resource Isolation

2.1 Overview

In a computing environment, resource isolation is a crucial aspect of ensuring that applications run

efficiently and without interference from other processes. This is particularly important in systems

with multiple NUMA nodes, where the memory access time varies depending on the memory

location relative to the processor. NUMA-aware resource isolation involves strategically assigning

tasks to specific CPU cores and memory regions to minimize data movement between NUMA

nodes, thereby reducing latency and improving overall performance.

In a NUMA system, each processor, or node, has its local memory, and the time it takes for a

processor to access memory depends on whether the memory is local (attached to the processor)

or remote (attached to another processor). Accessing local memory is faster than accessing remote

memory. Therefore, it is beneficial to assign tasks to processors in a way that maximizes access to

local memory and minimizes access to remote memory. This involves considering the NUMA

topology of the system, which includes the layout of the processors, memory, and interconnections.

NUMA-aware resource isolation is particularly important for managing real-time workloads,

which require timely and predictable performance. Real-time applications, such as industrial

automation, telecommunications, and online gaming, demand consistent low latency and high

throughput. By strategically assigning tasks to specific CPU cores and memory regions, it is

possible to minimize memory latency, reduce contention, and ensure predictable execution times

for critical tasks.

2.2 Tools and Strategies

There are several tools and strategies that can be employed to achieve effective NUMA-aware

resource isolation for real-time tasks:

CPU Pinning: This involves binding a specific task or thread to a particular CPU core. By

pinning tasks to specific cores, it is possible to control the execution of tasks and ensure that they

remain on their assigned cores. This reduces thread migration and contention, improving

predictability for real-time tasks.

Memory Binding: This involves binding the memory allocation of a task to specific NUMA

146 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

nodes. By binding the memory allocation of a task to the NUMA node where the task is running,

it is possible to ensure that the task accesses local memory as much as possible, minimizing the

overhead of inter-node communication.

Workload Placement Strategies: This involves strategically placing tasks on specific NUMA

nodes based on the availability of resources and the characteristics of the workload. For example,

if a task is memory-intensive, it may be beneficial to place it on a NUMA node with a large

amount of available memory. Similarly, if a task is CPU-intensive, it may be beneficial to place

it on a NUMA node with a high number of available CPU cores.

NUMA-Aware Load Balancing: This involves implementing load balancing mechanisms that

consider the NUMA topology. By distributing tasks across NUMA nodes based on the availability

of resources and minimizing cross-node communication, it is possible to optimize resource

utilization and improve overall performance.

NUMA-Aware Data Structures: This involves designing data structures that are NUMA-

aware. By allocating memory for each NUMA node and managing data placement explicitly, it is

possible to minimize remote memory accesses and improve data locality.

NUMA-Aware Scheduling Policies: This involves customizing scheduling policies to prioritize

real-time tasks and consider the NUMA topology when making scheduling decisions. By

prioritizing real-time tasks and considering the NUMA topology, it is possible to ensure that real-

time tasks are scheduled on the most appropriate NUMA nodes and that they receive the necessary

resources to meet their performance requirements.

Implementing these tools and strategies requires a deep understanding of the hardware architecture

and the characteristics of the workload. It may also involve fine-tuning at both the application and

system levels to achieve the desired performance outcomes. Ultimately, NUMA-aware resource

isolation plays a vital role in optimizing the performance of real-time workloads within systems

with multiple NUMA nodes.

3. In-Depth Deployment Patterns

Managing real-time workloads efficiently on systems with multiple NUMA nodes requires

strategic deployment patterns that consider the NUMA topology and the characteristics of the

workload. Here are some in-depth deployment patterns that can enhance the performance and

efficiency of real-time workloads:

3.1 Single NUMA Node Deployment

In this deployment pattern, the real-time workload is deployed on a single NUMA node to

minimize memory latency and contention. This is suitable when the workload's resource

requirements can be met by a single node. By deploying the workload on a single NUMA node, it

is possible to ensure that the task accesses local memory as much as possible, minimizing the

overhead of inter-node communication. However, this approach may not be suitable for larger

workloads that require more resources than a single NUMA node can provide.

3.2 NUMA Node Partitioning

For larger workloads, it may be necessary to divide the application into smaller partitions and

deploy each partition on a separate NUMA node. This reduces contention and improves data

locality within each partition. By dividing the application into smaller partitions and deploying

each partition on a separate NUMA node, it is possible to optimize resource utilization and improve

overall performance. However, this approach may introduce challenges related to data sharing and

communication between partitions.

3.3 Memory Binding and CPU Pinning

This involves binding the workload's memory allocation to specific NUMA nodes and pinning

147 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

CPU threads to cores on those nodes. By binding the memory allocation of a task to the NUMA

node where the task is running, and pinning the CPU threads to cores on those nodes, it is possible

to ensure that data remains local to the assigned memory and minimizes the overhead of inter-node

communication. This approach ensures that data remains local to the assigned memory and

minimizes the overhead of inter-node communication. However, it may introduce challenges

related to resource fragmentation, where some nodes are underutilized while others are

overburdened.

3.4 NUMA-Aware Load Balancing

This involves implementing load balancing mechanisms that consider the NUMA topology. By

distributing tasks across NUMA nodes based on the availability of resources and minimizing cross-

node communication, it is possible to optimize resource utilization and improve overall

performance. However, this approach may introduce challenges related to dynamic workload

changes, as workloads may change over time, and static deployment patterns may become

suboptimal.

3.5 Hybrid NUMA Awareness

In some applications, there may be a mix of real-time and non-real-time tasks. In such cases, it

may be beneficial to deploy real-time tasks on a dedicated NUMA node while letting non-real-

time tasks run on other nodes. This avoids interference with critical workloads and ensures that

real-time tasks receive the necessary resources to meet their performance requirements. However,

this approach may introduce challenges related to resource fragmentation and may require careful

planning and ongoing attention to ensure optimal performance.

3.6 Data Locality Optimization

This involves profiling the workload to understand memory access patterns and placing data

structures and frequently accessed memory on the same NUMA node as the processing cores that

need them. By optimizing data locality, it is possible to minimize remote memory accesses and

improve overall performance. However, this approach may introduce challenges related to data

sharing and communication between tasks running on different NUMA nodes.

In conclusion, these deployment patterns offer various ways to optimize the performance of real-

time workloads on systems with multiple NUMA nodes. Each approach has its benefits and

challenges, and the choice of deployment pattern depends on the nature of the real-time workload,

the system architecture, and the performance goals. It is important to assess and experiment with

different patterns to determine the best fit for a specific use case.

3.7 NUMA-Aware Data Structures

Data structures play a crucial role in the performance of real-time applications. Traditional data

structures do not consider the NUMA topology, which can lead to suboptimal performance due to

remote memory accesses and contention. NUMA-aware data structures are designed to optimize

data placement and access patterns based on the NUMA topology. These data structures allocate

memory for each NUMA node and manage data placement explicitly to minimize remote memory

accesses and improve data locality.

For example, a NUMA-aware queue may have separate queues for each NUMA node, and tasks

running on a node will enqueue and dequeue from the queue associated with that node. This

minimizes contention and remote memory accesses, improving overall performance. However,

this approach may introduce challenges related to data sharing and communication between tasks

running on different NUMA nodes.

Implementing NUMA-aware data structures requires a deep understanding of the hardware

architecture and the characteristics of the workload. It may also involve fine-tuning at both the

148 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

application and system levels to achieve the desired performance outcomes.

3.8 Thread and Core Affinity

Thread and core affinity is a strategy to bind specific threads to specific cores or sets of cores. This

is particularly important in a NUMA architecture, as it ensures that threads access local memory

as much as possible, minimizing the overhead of inter-node communication. Setting thread and

core affinity involves configuring the operating system scheduler to assign specific threads to

specific cores.

For example, a real-time application may have multiple threads, each responsible for a different

task. By assigning each thread to a specific core on a specific NUMA node, it is possible to

optimize data locality and minimize contention. However, this approach may introduce challenges

related to resource fragmentation, where some cores are underutilized while others are

overburdened.

3.9 Dynamic Resource Management

Dynamic resource management involves continuously monitoring the system and workload and

adjusting the deployment pattern, thread and core affinity, and data placement based on changing

conditions. This is particularly important for real-time workloads, which may exhibit dynamic

behavior and require timely and predictable performance.

For example, a real-time application may experience bursts of activity that temporarily increase

the demand for CPU and memory resources. By dynamically adjusting the deployment pattern,

thread and core affinity, and data placement, it is possible to accommodate these changes and

maintain optimal performance. However, this approach may introduce challenges related to the

complexity of the dynamic resource management algorithms and the overhead of continuously

monitoring and adjusting the system.

3.10 NUMA-Aware Scheduling Policies

NUMA-aware scheduling policies involve customizing the operating system scheduler to consider

the NUMA topology when making scheduling decisions. This includes prioritizing real-time tasks,

assigning tasks to the most appropriate NUMA nodes, and minimizing cross-node communication.

For example, a NUMA-aware scheduler may prioritize real-time tasks and assign them to NUMA

nodes with the most available resources. It may also consider the communication patterns between

tasks and assign tasks that frequently communicate with each other to the same NUMA node. This

minimizes the overhead of inter-node communication and improves overall performance.

However, this approach may introduce challenges related to the complexity of the scheduling

algorithms and the potential for resource fragmentation.

In conclusion, these strategies offer various ways to optimize the performance of real-time

workloads on systems with multiple NUMA nodes. Each approach has its benefits and challenges,

and the choice of strategy depends on the nature of the real-time workload, the system architecture,

and the performance goals. It is important to assess and experiment with different strategies to

determine the best fit for a specific use case.

4. Use Cases

The efficient management of real-time workloads on systems with multiple NUMA nodes is

crucial for various applications that require timely and predictable performance. This section will

present a tabular representation of different deployment patterns and their use cases for real-time

workloads and provide a detailed discussion of specific use cases.

4.1 Tabular Representation of Deployment Patterns and Use Cases

Deployment Pattern Use Case and Description

149 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

Single NUMA Node Small real-time workloads that can fit entirely within the

resources of a single NUMA node.

NUMA Node Partitioning Large real-time workloads divided into smaller partitions to

improve data locality and reduce contention.

Memory Binding and CPU

Pinning

Critical real-time tasks that require minimal memory latency

and are isolated on specific cores and memory.

NUMA-Aware Load

Balancing

Workloads with varying task demands distributed across

NUMA nodes to optimize resource utilization.

Hybrid NUMA Awareness Combining real-time and non-real-time tasks on separate

NUMA nodes to avoid interference and contention.

Data Locality Optimization Workloads with specific memory access patterns that benefit

from placing data and cores on the same node.

NUMA-Aware Data

Structures

Applications with custom data structures explicitly designed

to minimize remote memory accesses.

Thread and Core Affinity Real-time tasks that need to remain on specific cores to avoid

thread migration and reduce contention.

Dynamic Resource

Management

Fluctuating workloads that require adaptive resource

allocation and load balancing for real-time tasks.

NUMA-Aware Scheduling

Policies

Real-time workloads with strict timing requirements, using

custom scheduling strategies based on NUMA.

4.2 Detailed Discussion of Specific Use Cases

Financial Trading Systems: Financial trading systems require timely and predictable performance

to execute trades quickly and accurately. These systems often involve complex algorithms and

high-frequency trading, which demand consistent low latency and high throughput. NUMA-aware

resource isolation, such as memory binding and CPU pinning, can help optimize the performance

of financial trading systems by minimizing memory latency and ensuring predictable execution

times for critical tasks.

Online Gaming Servers: Online gaming servers host multiplayer online games that require real-

time interaction between players. These servers must handle a large number of concurrent

connections and provide a smooth and responsive gaming experience. NUMA-aware load

balancing and dynamic resource management can help optimize the performance of online gaming

servers by distributing tasks across NUMA nodes based on the availability of resources and

minimizing cross-node communication.

Telecommunications and Networking: Telecommunications and networking applications often

150 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

involve real-time processing of data packets and require consistent low latency and high

throughput. NUMA-aware data structures and data locality optimization can help optimize the

performance of telecommunications and networking applications by minimizing remote memory

accesses and improving data locality.

Industrial Automation and Robotics: Industrial automation and robotics applications often involve

real-time control of machines and robots. These applications require timely and predictable

performance to ensure the safety and efficiency of the operations. NUMA-aware scheduling

policies and thread and core affinity can help optimize the performance of industrial automation

and robotics applications by prioritizing real-time tasks and assigning them to the most appropriate

NUMA nodes.

Aerospace and Defense Applications: Aerospace and defense applications often involve real-time

processing of sensor data and control of aircraft and defense systems. These applications require

consistent low latency and high throughput to ensure the safety and effectiveness of the operations.

NUMA-aware resource isolation and deployment patterns, such as NUMA node partitioning and

hybrid NUMA awareness, can help optimize the performance of aerospace and defense

applications by minimizing memory latency and ensuring predictable execution times for critical

tasks.

In conclusion, these use cases illustrate the importance of NUMA-aware resource isolation and

deployment patterns in optimizing the performance of real-time workloads. Each use case has its

unique requirements and challenges, and the choice of deployment pattern and strategy depends

on the nature of the workload, the system architecture, and the performance goals. It is important

to assess and experiment with different deployment patterns and strategies to determine the best

fit for a specific use case.

5. Caveats and Challenges

Implementing NUMA-aware strategies for real-time workloads involves several caveats and

challenges that need to be carefully considered to achieve the desired performance outcomes.

5.1 Complexity

Implementing NUMA-aware strategies adds complexity to the system configuration, deployment,

and management. It involves a deep understanding of the hardware architecture, the characteristics

of the workload, and the performance goals. It may also involve fine-tuning at both the application

and system levels, customizing scheduling policies, implementing NUMA-aware data structures,

and dynamically managing resources based on changing conditions. This complexity may make it

challenging to implement and maintain NUMA-aware strategies, particularly for organizations

with limited expertise and resources.

5.2 Resource Fragmentation

NUMA-aware strategies, such as thread and core affinity and NUMA node partitioning, may lead

to resource fragmentation, where some nodes are underutilized while others are overburdened.

This may result in suboptimal performance and inefficient resource utilization. It is important to

carefully plan the deployment pattern and continuously monitor and adjust the system to minimize

resource fragmentation and optimize resource utilization.

5.3 Dynamic Workload Changes

Real-time workloads may exhibit dynamic behavior, and static deployment patterns may become

suboptimal over time. For example, a real-time application may experience bursts of activity that

temporarily increase the demand for CPU and memory resources. Dynamic resource management

algorithms are needed to continuously monitor and adjust the system based on changing workload

demands and system conditions. However, this introduces additional complexity and overhead,

151 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

and it may be challenging to implement dynamic resource management algorithms that are both

efficient and effective.

5.4 Interference with Other Workloads

NUMA-aware deployment may inadvertently affect the performance of non-real-time tasks

sharing the same hardware. For example, prioritizing real-time tasks and assigning them to specific

NUMA nodes may lead to resource contention and suboptimal performance for non-real-time

tasks. It is important to carefully plan the deployment pattern and consider the impact on non-real-

time tasks to strike a balance between optimizing real-time tasks and minimizing the impact on

non-real-time tasks.

5.5 Increased Maintenance Overhead

Implementing NUMA-aware strategies may increase the maintenance overhead. It may involve

customizing the operating system scheduler, implementing NUMA-aware data structures, and

continuously monitoring and adjusting the system based on changing conditions. This may increase

the maintenance burden and require ongoing attention and expertise to ensure optimal performance.

5.6 Limited System Understanding

Implementing NUMA-aware strategies requires a deep understanding of the hardware architecture,

the characteristics of the workload, and the performance goals. However, many organizations may

have limited expertise and understanding of these aspects, making it challenging to implement and

maintain NUMA-aware strategies effectively.

In conclusion, implementing NUMA-aware strategies for real-time workloads involves several

caveats and challenges that need to be carefully considered. It is important to assess the

complexity, resource fragmentation, dynamic workload changes, interference with other

workloads, increased maintenance overhead, and limited system understanding to determine the

best approach for a specific use case. It is also important to continuously monitor and adjust the

system based on changing conditions to ensure optimal performance.

5.7 Performance Variability

Performance variability is a significant concern in real-time systems. The performance of real-time

tasks must be consistent and predictable to meet their timing requirements. However,

implementing NUMA-aware strategies may introduce performance variability due to several

factors. For example, dynamic resource management algorithms may continuously adjust the

system based on changing workload demands and system conditions, leading to variability in task

execution times. Similarly, NUMA-aware load balancing may distribute tasks across NUMA

nodes based on the availability of resources, leading to variability in task execution times. It is

important to carefully design and test the system to minimize performance variability and ensure

that real-time tasks meet their timing requirements.

5.8 Potential for Deadlocks

Implementing NUMA-aware strategies may introduce the potential for deadlocks. For example,

NUMA-aware data structures may involve complex synchronization mechanisms to ensure data

consistency across NUMA nodes. Similarly, dynamic resource management algorithms may

involve complex decision-making processes to allocate and deallocate resources based on

changing conditions. These complexities may introduce the potential for deadlocks, where tasks

are unable to progress because each task is waiting for another task to release a resource. It is

important to carefully design and test the system to minimize the potential for deadlocks and ensure

that tasks can progress smoothly.

5.9 Limited Benefit for Small Workloads

NUMA-aware strategies may provide limited benefits for small workloads that do not fully utilize

152 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

the available resources. For example, a small workload may not generate enough tasks to fully

utilize the available CPU cores and memory, making it unnecessary to implement complex

NUMA-aware strategies. Similarly, a small workload may not generate enough memory accesses

to justify the overhead of implementing NUMA-aware data structures. It is important to carefully

assess the characteristics of the workload and the performance goals to determine whether

implementing NUMA-aware strategies is necessary and beneficial.

5.10 Platform-Specific Considerations

NUMA architectures and configurations may vary significantly across different hardware

platforms. For example, the number of NUMA nodes, the number of CPU cores per node, the

amount of memory per node, and the interconnection topology may vary across different

platforms. These platform-specific considerations may affect the performance of NUMA-aware

strategies and may require platform-specific optimizations. For example, a NUMA-aware data

structure optimized for a platform with a small number of NUMA nodes and a large amount of

memory per node may not perform well on a platform with a large number of NUMA nodes and

a small amount of memory per node. It is important to carefully assess the platform-specific

considerations and customize the NUMA-aware strategies accordingly.

In conclusion, implementing NUMA-aware strategies for real-time workloads involves several

caveats and challenges that need to be carefully considered. Performance variability, the potential

for deadlocks, limited benefits for small workloads, and platform-specific considerations are

significant challenges that may affect the performance and effectiveness of NUMA-aware

strategies. It is important to carefully design, test, and customize the system to address these

challenges and ensure optimal performance for real-time workloads.

6. Conclusion

The management of real-time workloads on systems with multiple NUMA nodes is a critical aspect

of ensuring applications run efficiently and without interference from other processes. This paper

has discussed various strategies for NUMA-aware resource isolation and deployment patterns,

their use cases, and the associated caveats and challenges.

6.1 Summary of Key Findings

Importance of NUMA-Aware Strategies: Implementing NUMA-aware strategies is crucial for

optimizing the performance of real-time workloads on systems with multiple NUMA nodes. These

strategies involve strategically assigning tasks to specific CPU cores and memory regions,

implementing NUMA-aware data structures, customizing scheduling policies, and dynamically

managing resources based on changing conditions.

Variety of Deployment Patterns: There are several deployment patterns that can be employed

to achieve effective NUMA-aware resource isolation for real-time tasks, including single NUMA

node deployment, NUMA node partitioning, memory binding and CPU pinning, NUMA-aware

load balancing, hybrid NUMA awareness, and data locality optimization.

Caveats and Challenges: Implementing NUMA-aware strategies involves several caveats and

challenges, including increased complexity, resource fragmentation, dynamic workload changes,

interference with other workloads, increased maintenance overhead, limited system understanding,

performance variability, potential for deadlocks, limited benefits for small workloads, and

platform-specific considerations.

6.2 Recommendations for Implementation

Assess Workload Characteristics: It is important to carefully assess the characteristics of the

workload and the performance goals to determine the most appropriate NUMA-aware strategies

and deployment patterns.

153 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

Consider Platform-Specific Considerations: NUMA architectures and configurations may

vary significantly across different hardware platforms, and it is important to customize the

NUMA- aware strategies accordingly.

Minimize Performance Variability: It is important to carefully design and test the system to

minimize performance variability and ensure that real-time tasks meet their timing requirements.

Address Resource Fragmentation: It is important to carefully plan the deployment pattern and

continuously monitor and adjust the system to minimize resource fragmentation and optimize

resource utilization.

Consider Maintenance Overhead: Implementing NUMA-aware strategies may increase the

maintenance overhead, and it is important to consider the available expertise and resources.

6.3 Future Directions

Automated Resource Management: Developing automated resource management algorithms that

can continuously monitor and adjust the system based on changing workload demands and system

conditions can help address the challenges associated with dynamic workload changes and

resource fragmentation.

Advanced Scheduling Algorithms: Developing advanced scheduling algorithms that consider the

NUMA topology, the characteristics of the workload, and the performance goals can help address

the challenges associated with performance variability and interference with other workloads.

Platform-Specific Optimizations: Developing platform-specific optimizations that consider the

unique characteristics of different hardware platforms can help address the challenges associated

with platform-specific considerations.

In conclusion, implementing NUMA-aware strategies for real-time workloads is crucial for

optimizing performance on systems with multiple NUMA nodes. It involves several caveats and

challenges that need to be carefully considered and addressed. Future directions include

developing automated resource management algorithms, advanced scheduling algorithms, and

platform-specific optimizations to further enhance the performance of real-time workloads on

systems with multiple NUMA nodes.

ACRONYMS:

NUMA - Non-Uniform Memory Access

CPU - Central Processing Unit

OS - Operating System

RAM - Random Access Memory

HPC - High Performance Computing

SMP - Symmetric Multiprocessing

UMA - Uniform Memory Access

API - Application Programming Interface

VM - Virtual Machine

QoS - Quality of Service

I/O - Input/Output

GPU - Graphics Processing Unit

FPGA - Field-Programmable Gate Array

IPC - Inter-Process Communication

ISR - Interrupt Service Routine

RTOS - Real-Time Operating System

SMT - Simultaneous Multithreading

HT - Hyper-Threading

154 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

DMA - Direct Memory Access

MMU - Memory Management Unit

TLB - Translation Lookaside Buffer

LRU - Least Recently Used

FIFO - First In, First Out

LIFO - Last In, First Out

SSD - Solid State Drive

HDD - Hard Disk Drive

RAID - Redundant Array of Independent Disks

NAS - Network Attached Storage

SAN - Storage Area Network

NIC - Network Interface Card

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

IP - Internet Protocol

HTTP - HyperText Transfer Protocol

HTTPS - HyperText Transfer Protocol Secure

FTP - File Transfer Protocol

SNMP - Simple Network Management Protocol

QEMU - Quick Emulator

KVM - Kernel-based Virtual Machine

VMX - Virtual Machine Extensions

SVM - Secure Virtual Machine

REFERENCES:

[1] Tim Kiefer, Thomas Kissinger, Benjamin Schlegel, Dirk Habich (2014). A NUMA-

aware in-memory storage engine for tera-scale multiprocessor systems. Researchgate.net.

[2] Jianmin Qian, Jian Li, Ruhui Ma, Haibing Guan (2018). Optimizing Virtual Resource

Management for Consolidated NUMA Systems. IEEE 36th International Conference on

Computer Design (ICCD).

[3] Richard Wu; Xiao Zhang; Xiangling Kong; Yangyi Chen; Rohit Jnagal; Robert Hagm

(2019). Evaluation of NUMA-Aware Scheduling in Warehouse-Scale Clusters. IEEE

12th International Conference on Cloud Computing (CLOUD).

[4] Mulya Agung, Muhammad Alfian Amrizal, Ryusuke Egawa, Hiroyuki Takizawa (2019).

The Impacts of Locality and Memory Congestion-aware Thread Mapping on Energy

Consumption of Modern NUMA Systems. IEEE Symposium in Low-Power and High-

Speed Chips (COOL CHIPS).

[5] Puya Memarzia, Suprio Ray, Virendra C. Bhavsar (2020). The Art of Efficient In-

memory Query Processing on NUMA Systems: a Systematic Approach. IEEE Xplore

IEEE 36th International Conference on Data Engineering (ICDE).

[6] Mughal, A. A. (2019). Cybersecurity Hygiene in the Era of Internet of Things (IoT): Best

Practices and Challenges. Applied Research in Artificial Intelligence and Cloud

Computing, 2(1), 1-31.

[7] Mughal, A. A. (2020). Cyber Attacks on OSI Layers: Understanding the Threat

Landscape. Journal of Humanities and Applied Science Research, 3(1), 1-18.

[8] Mughal, A. A. (2019). A COMPREHENSIVE STUDY OF PRACTICAL TECHNIQUES

AND METHODOLOGIES IN INCIDENT-BASED APPROACHES FOR CYBER

155 | P a g
e

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IJCST) Vol. 4 No. 1 (2020)

FORENSICS. Tensorgate Journal of Sustainable Technology and Infrastructure for

Developing Countries, 2(1), 1-18.

[9] Mughal, A. A. (2018). The Art of Cybersecurity: Defense in Depth Strategy for Robust

Protection. International Journal of Intelligent Automation and Computing, 1(1), 1-20.

[10] Mughal, A. A. (2018). Artificial Intelligence in Information Security: Exploring the

Advantages, Challenges, and Future Directions. Journal of Artificial Intelligence and

Machine Learning in Management, 2(1), 22-34.

