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Abstract: 
Non-Uniform Memory Access (NUMA) is a computer memory design used in multiprocessing, 

where the memory access time depends on the memory location relative to the processor. With the 

advent of multi-core processors and complex applications, managing real-time workloads 

efficiently on systems with multiple NUMA nodes has become increasingly important. This paper 

provides a comprehensive analysis about "NUMA- Aware Real-Time Workloads". It covers 

various aspects of managing real-time workloads on systems with multiple NUMA nodes, 

including the importance of NUMA-aware resource isolation, in-depth deployment patterns, use 

cases, and associated caveats. The paper discusses the tools and strategies for effective NUMA-

aware resource isolation, such as CPU pinning, memory binding, and workload placement 

strategies. It also explores various deployment patterns, their use cases, and the challenges 

associated with implementing NUMA-aware strategies. The paper concludes by summarizing the 

vital role of NUMA-aware resource isolation and deployment patterns in optimizing the 

performance of real-time workloads and highlights the need for careful planning, ongoing 

attention, rigorous testing, performance monitoring, and iterative adjustments. This analysis aims 

to provide insights and recommendations for organizations looking to optimize the performance of 

their real-time applications while managing the inherent complexities associated with NUMA-

aware resource isolation. 
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1. Introduction 

The rapid advancement in computing technology has led to the development of multi-core 

processors and complex applications that demand efficient management of real-time workloads. 

One critical aspect of this management is the Non-Uniform Memory Access (NUMA) architecture, 

a computer memory design used in multiprocessing systems. This introduction aims to provide a 

background on NUMA and discuss the importance of NUMA-aware resource isolation in 

managing real-time workloads. 

1.1 Background on NUMA 

In a NUMA system, multiple processors, or nodes, are connected to a shared memory, and each 

processor has its local memory. The time it takes for a processor to access memory depends on the 

memory location relative to the processor. Accessing local memory (memory attached to the 

processor) is faster than accessing remote memory (memory attached to another processor). This 
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design contrasts with the Uniform Memory Access (UMA) architecture, where all processors 

access the memory with uniform latency. NUMA architecture aims to overcome the scalability 

limitations of UMA by providing processors with faster access to local memory while still 

allowing access to remote memory when necessary. 

1.2 Importance of NUMA-Aware Resource Isolation 

Managing real-time workloads efficiently on systems with multiple NUMA nodes is crucial for 

applications that require timely and predictable performance. Real-time workloads, such as 

financial trading systems, online gaming servers, and autonomous vehicles, demand consistent low 

latency and high throughput. NUMA-aware resource isolation involves assigning tasks to specific 

CPU cores and memory regions to minimize data movement between NUMA nodes, thereby 

reducing latency and improving performance. Tools like CPU pinning, memory binding, and 

workload placement strategies can help achieve effective NUMA-aware resource isolation for real- 

time tasks. Implementing NUMA-aware strategies can significantly enhance the efficiency and 

responsiveness of real-time applications by minimizing memory latency, reducing contention, and 

ensuring predictable execution times for critical tasks. However, it also introduces complexities in 

system configuration, management, and maintenance, which require careful planning and ongoing 

attention. Ultimately, NUMA-aware resource isolation plays a vital role in optimizing the 

performance of real-time workloads within systems with multiple NUMA nodes. 

2. NUMA-Aware Resource Isolation 

2.1 Overview 

In a computing environment, resource isolation is a crucial aspect of ensuring that applications run 

efficiently and without interference from other processes. This is particularly important in systems 

with multiple NUMA nodes, where the memory access time varies depending on the memory 

location relative to the processor. NUMA-aware resource isolation involves strategically assigning 

tasks to specific CPU cores and memory regions to minimize data movement between NUMA 

nodes, thereby reducing latency and improving overall performance. 

In a NUMA system, each processor, or node, has its local memory, and the time it takes for a 

processor to access memory depends on whether the memory is local (attached to the processor) 

or remote (attached to another processor). Accessing local memory is faster than accessing remote 

memory. Therefore, it is beneficial to assign tasks to processors in a way that maximizes access to 

local memory and minimizes access to remote memory. This involves considering the NUMA 

topology of the system, which includes the layout of the processors, memory, and interconnections. 

NUMA-aware resource isolation is particularly important for managing real-time workloads, 

which require timely and predictable performance. Real-time applications, such as industrial 

automation, telecommunications, and online gaming, demand consistent low latency and high 

throughput. By strategically assigning tasks to specific CPU cores and memory regions, it is 

possible to minimize memory latency, reduce contention, and ensure predictable execution times 

for critical tasks. 

2.2 Tools and Strategies 

There are several tools and strategies that can be employed to achieve effective NUMA-aware 

resource isolation for real-time tasks: 

CPU Pinning: This involves binding a specific task or thread to a particular CPU core. By 

pinning tasks to specific cores, it is possible to control the execution of tasks and ensure that they 

remain on their assigned cores. This reduces thread migration and contention, improving 

predictability for real-time tasks. 

Memory Binding: This involves binding the memory allocation of a task to specific NUMA 
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nodes. By binding the memory allocation of a task to the NUMA node where the task is running, 

it is possible to ensure that the task accesses local memory as much as possible, minimizing the 

overhead of inter-node communication. 

Workload Placement Strategies: This involves strategically placing tasks on specific NUMA 

nodes based on the availability of resources and the characteristics of the workload. For example, 

if a task is memory-intensive, it may be beneficial to place it on a NUMA node with a large 

amount of available memory. Similarly, if a task is CPU-intensive, it may be beneficial to place 

it on a NUMA node with a high number of available CPU cores. 

NUMA-Aware Load Balancing: This involves implementing load balancing mechanisms that 

consider the NUMA topology. By distributing tasks across NUMA nodes based on the availability 

of resources and minimizing cross-node communication, it is possible to optimize resource 

utilization and improve overall performance. 

NUMA-Aware Data Structures: This involves designing data structures that are NUMA-

aware. By allocating memory for each NUMA node and managing data placement explicitly, it is 

possible to minimize remote memory accesses and improve data locality. 

NUMA-Aware Scheduling Policies: This involves customizing scheduling policies to prioritize 

real-time tasks and consider the NUMA topology when making scheduling decisions. By 

prioritizing real-time tasks and considering the NUMA topology, it is possible to ensure that real-

time tasks are scheduled on the most appropriate NUMA nodes and that they receive the necessary 

resources to meet their performance requirements. 

Implementing these tools and strategies requires a deep understanding of the hardware architecture 

and the characteristics of the workload. It may also involve fine-tuning at both the application and 

system levels to achieve the desired performance outcomes. Ultimately, NUMA-aware resource 

isolation plays a vital role in optimizing the performance of real-time workloads within systems 

with multiple NUMA nodes. 

3. In-Depth Deployment Patterns 

Managing real-time workloads efficiently on systems with multiple NUMA nodes requires 

strategic deployment patterns that consider the NUMA topology and the characteristics of the 

workload. Here are some in-depth deployment patterns that can enhance the performance and 

efficiency of real-time workloads: 

3.1 Single NUMA Node Deployment 

In this deployment pattern, the real-time workload is deployed on a single NUMA node to 

minimize memory latency and contention. This is suitable when the workload's resource 

requirements can be met by a single node. By deploying the workload on a single NUMA node, it 

is possible to ensure that the task accesses local memory as much as possible, minimizing the 

overhead of inter-node communication. However, this approach may not be suitable for larger 

workloads that require more resources than a single NUMA node can provide. 

3.2 NUMA Node Partitioning 

For larger workloads, it may be necessary to divide the application into smaller partitions and 

deploy each partition on a separate NUMA node. This reduces contention and improves data 

locality within each partition. By dividing the application into smaller partitions and deploying 

each partition on a separate NUMA node, it is possible to optimize resource utilization and improve 

overall performance. However, this approach may introduce challenges related to data sharing and 

communication between partitions. 

3.3 Memory Binding and CPU Pinning 

This involves binding the workload's memory allocation to specific NUMA nodes and pinning 
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CPU threads to cores on those nodes. By binding the memory allocation of a task to the NUMA 

node where the task is running, and pinning the CPU threads to cores on those nodes, it is possible 

to ensure that data remains local to the assigned memory and minimizes the overhead of inter-node 

communication. This approach ensures that data remains local to the assigned memory and 

minimizes the overhead of inter-node communication. However, it may introduce challenges 

related to resource fragmentation, where some nodes are underutilized while others are 

overburdened. 

3.4 NUMA-Aware Load Balancing 

This involves implementing load balancing mechanisms that consider the NUMA topology. By 

distributing tasks across NUMA nodes based on the availability of resources and minimizing cross- 

node communication, it is possible to optimize resource utilization and improve overall 

performance. However, this approach may introduce challenges related to dynamic workload 

changes, as workloads may change over time, and static deployment patterns may become 

suboptimal. 

3.5 Hybrid NUMA Awareness 

In some applications, there may be a mix of real-time and non-real-time tasks. In such cases, it 

may be beneficial to deploy real-time tasks on a dedicated NUMA node while letting non-real- 

time tasks run on other nodes. This avoids interference with critical workloads and ensures that 

real-time tasks receive the necessary resources to meet their performance requirements. However, 

this approach may introduce challenges related to resource fragmentation and may require careful 

planning and ongoing attention to ensure optimal performance. 

3.6 Data Locality Optimization 

This involves profiling the workload to understand memory access patterns and placing data 

structures and frequently accessed memory on the same NUMA node as the processing cores that 

need them. By optimizing data locality, it is possible to minimize remote memory accesses and 

improve overall performance. However, this approach may introduce challenges related to data 

sharing and communication between tasks running on different NUMA nodes. 

In conclusion, these deployment patterns offer various ways to optimize the performance of real- 

time workloads on systems with multiple NUMA nodes. Each approach has its benefits and 

challenges, and the choice of deployment pattern depends on the nature of the real-time workload, 

the system architecture, and the performance goals. It is important to assess and experiment with 

different patterns to determine the best fit for a specific use case. 

3.7 NUMA-Aware Data Structures 

Data structures play a crucial role in the performance of real-time applications. Traditional data 

structures do not consider the NUMA topology, which can lead to suboptimal performance due to 

remote memory accesses and contention. NUMA-aware data structures are designed to optimize 

data placement and access patterns based on the NUMA topology. These data structures allocate 

memory for each NUMA node and manage data placement explicitly to minimize remote memory 

accesses and improve data locality. 

For example, a NUMA-aware queue may have separate queues for each NUMA node, and tasks 

running on a node will enqueue and dequeue from the queue associated with that node. This 

minimizes contention and remote memory accesses, improving overall performance. However, 

this approach may introduce challenges related to data sharing and communication between tasks 

running on different NUMA nodes. 

Implementing NUMA-aware data structures requires a deep understanding of the hardware 

architecture and the characteristics of the workload. It may also involve fine-tuning at both the 
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application and system levels to achieve the desired performance outcomes. 

3.8 Thread and Core Affinity 

Thread and core affinity is a strategy to bind specific threads to specific cores or sets of cores. This 

is particularly important in a NUMA architecture, as it ensures that threads access local memory 

as much as possible, minimizing the overhead of inter-node communication. Setting thread and 

core affinity involves configuring the operating system scheduler to assign specific threads to 

specific cores. 

For example, a real-time application may have multiple threads, each responsible for a different 

task. By assigning each thread to a specific core on a specific NUMA node, it is possible to 

optimize data locality and minimize contention. However, this approach may introduce challenges 

related to resource fragmentation, where some cores are underutilized while others are 

overburdened. 

3.9 Dynamic Resource Management 

Dynamic resource management involves continuously monitoring the system and workload and 

adjusting the deployment pattern, thread and core affinity, and data placement based on changing 

conditions. This is particularly important for real-time workloads, which may exhibit dynamic 

behavior and require timely and predictable performance. 

For example, a real-time application may experience bursts of activity that temporarily increase 

the demand for CPU and memory resources. By dynamically adjusting the deployment pattern, 

thread and core affinity, and data placement, it is possible to accommodate these changes and 

maintain optimal performance. However, this approach may introduce challenges related to the 

complexity of the dynamic resource management algorithms and the overhead of continuously 

monitoring and adjusting the system. 

3.10 NUMA-Aware Scheduling Policies 

NUMA-aware scheduling policies involve customizing the operating system scheduler to consider 

the NUMA topology when making scheduling decisions. This includes prioritizing real-time tasks, 

assigning tasks to the most appropriate NUMA nodes, and minimizing cross-node communication. 

For example, a NUMA-aware scheduler may prioritize real-time tasks and assign them to NUMA 

nodes with the most available resources. It may also consider the communication patterns between 

tasks and assign tasks that frequently communicate with each other to the same NUMA node. This 

minimizes the overhead of inter-node communication and improves overall performance.  

However, this approach may introduce challenges related to the complexity of the scheduling 

algorithms and the potential for resource fragmentation. 

In conclusion, these strategies offer various ways to optimize the performance of real-time 

workloads on systems with multiple NUMA nodes. Each approach has its benefits and challenges, 

and the choice of strategy depends on the nature of the real-time workload, the system architecture, 

and the performance goals. It is important to assess and experiment with different strategies to 

determine the best fit for a specific use case. 

4. Use Cases 

The efficient management of real-time workloads on systems with multiple NUMA nodes is 

crucial for various applications that require timely and predictable performance. This section will 

present a tabular representation of different deployment patterns and their use cases for real-time 

workloads and provide a detailed discussion of specific use cases. 

4.1 Tabular Representation of Deployment Patterns and Use Cases 
 

Deployment Pattern Use Case and Description 
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Single NUMA Node Small real-time workloads that can fit entirely within the 

resources of a single NUMA node. 

NUMA Node Partitioning Large real-time workloads divided into smaller partitions to 

improve data locality and reduce contention. 

Memory Binding and CPU 

Pinning 

Critical real-time tasks that require minimal memory latency 

and are isolated on specific cores and memory. 

NUMA-Aware Load 

Balancing 

Workloads with varying task demands distributed across 

NUMA nodes to optimize resource utilization. 

Hybrid NUMA Awareness Combining real-time and non-real-time tasks on separate 

NUMA nodes to avoid interference and contention. 

Data Locality Optimization Workloads with specific memory access patterns that benefit 

from placing data and cores on the same node. 

NUMA-Aware Data 

Structures 

Applications with custom data structures explicitly designed 

to minimize remote memory accesses. 

Thread and Core Affinity Real-time tasks that need to remain on specific cores to avoid 

thread migration and reduce contention. 

Dynamic Resource 

Management 

Fluctuating workloads that require adaptive resource 

allocation and load balancing for real-time tasks. 

NUMA-Aware Scheduling 

Policies 

Real-time workloads with strict timing requirements, using 

custom scheduling strategies based on NUMA. 

 

4.2 Detailed Discussion of Specific Use Cases 

Financial Trading Systems: Financial trading systems require timely and predictable performance 

to execute trades quickly and accurately. These systems often involve complex algorithms and 

high-frequency trading, which demand consistent low latency and high throughput. NUMA-aware 

resource isolation, such as memory binding and CPU pinning, can help optimize the performance 

of financial trading systems by minimizing memory latency and ensuring predictable execution 

times for critical tasks. 

Online Gaming Servers: Online gaming servers host multiplayer online games that require real- 

time interaction between players. These servers must handle a large number of concurrent 

connections and provide a smooth and responsive gaming experience. NUMA-aware load 

balancing and dynamic resource management can help optimize the performance of online gaming 

servers by distributing tasks across NUMA nodes based on the availability of resources and 

minimizing cross-node communication. 

Telecommunications and Networking: Telecommunications and networking applications often 
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involve real-time processing of data packets and require consistent low latency and high 

throughput. NUMA-aware data structures and data locality optimization can help optimize the 

performance of telecommunications and networking applications by minimizing remote memory 

accesses and improving data locality. 

Industrial Automation and Robotics: Industrial automation and robotics applications often involve 

real-time control of machines and robots. These applications require timely and predictable 

performance to ensure the safety and efficiency of the operations. NUMA-aware scheduling 

policies and thread and core affinity can help optimize the performance of industrial automation 

and robotics applications by prioritizing real-time tasks and assigning them to the most appropriate 

NUMA nodes. 

Aerospace and Defense Applications: Aerospace and defense applications often involve real-time 

processing of sensor data and control of aircraft and defense systems. These applications require 

consistent low latency and high throughput to ensure the safety and effectiveness of the operations. 

NUMA-aware resource isolation and deployment patterns, such as NUMA node partitioning and 

hybrid NUMA awareness, can help optimize the performance of aerospace and defense 

applications by minimizing memory latency and ensuring predictable execution times for critical 

tasks. 

In conclusion, these use cases illustrate the importance of NUMA-aware resource isolation and 

deployment patterns in optimizing the performance of real-time workloads. Each use case has its 

unique requirements and challenges, and the choice of deployment pattern and strategy depends 

on the nature of the workload, the system architecture, and the performance goals. It is important 

to assess and experiment with different deployment patterns and strategies to determine the best 

fit for a specific use case. 

5. Caveats and Challenges 

Implementing NUMA-aware strategies for real-time workloads involves several caveats and 

challenges that need to be carefully considered to achieve the desired performance outcomes. 

5.1 Complexity 

Implementing NUMA-aware strategies adds complexity to the system configuration, deployment, 

and management. It involves a deep understanding of the hardware architecture, the characteristics 

of the workload, and the performance goals. It may also involve fine-tuning at both the application 

and system levels, customizing scheduling policies, implementing NUMA-aware data structures, 

and dynamically managing resources based on changing conditions. This complexity may make it 

challenging to implement and maintain NUMA-aware strategies, particularly for organizations 

with limited expertise and resources. 

5.2 Resource Fragmentation 

NUMA-aware strategies, such as thread and core affinity and NUMA node partitioning, may lead 

to resource fragmentation, where some nodes are underutilized while others are overburdened. 

This may result in suboptimal performance and inefficient resource utilization. It is important to 

carefully plan the deployment pattern and continuously monitor and adjust the system to minimize 

resource fragmentation and optimize resource utilization. 

5.3 Dynamic Workload Changes 

Real-time workloads may exhibit dynamic behavior, and static deployment patterns may become 

suboptimal over time. For example, a real-time application may experience bursts of activity that 

temporarily increase the demand for CPU and memory resources. Dynamic resource management 

algorithms are needed to continuously monitor and adjust the system based on changing workload 

demands and system conditions. However, this introduces additional complexity and overhead, 
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and it may be challenging to implement dynamic resource management algorithms that are both 

efficient and effective. 

5.4 Interference with Other Workloads 

NUMA-aware deployment may inadvertently affect the performance of non-real-time tasks 

sharing the same hardware. For example, prioritizing real-time tasks and assigning them to specific 

NUMA nodes may lead to resource contention and suboptimal performance for non-real-time 

tasks. It is important to carefully plan the deployment pattern and consider the impact on non-real- 

time tasks to strike a balance between optimizing real-time tasks and minimizing the impact on 

non-real-time tasks. 

5.5 Increased Maintenance Overhead 

Implementing NUMA-aware strategies may increase the maintenance overhead. It may involve 

customizing the operating system scheduler, implementing NUMA-aware data structures, and 

continuously monitoring and adjusting the system based on changing conditions. This may increase 

the maintenance burden and require ongoing attention and expertise to ensure optimal performance. 

5.6 Limited System Understanding 

Implementing NUMA-aware strategies requires a deep understanding of the hardware architecture, 

the characteristics of the workload, and the performance goals. However, many organizations may 

have limited expertise and understanding of these aspects, making it challenging to implement and 

maintain NUMA-aware strategies effectively. 

In conclusion, implementing NUMA-aware strategies for real-time workloads involves several 

caveats and challenges that need to be carefully considered. It is important to assess the 

complexity, resource fragmentation, dynamic workload changes, interference with other 

workloads, increased maintenance overhead, and limited system understanding to determine the 

best approach for a specific use case. It is also important to continuously monitor and adjust the 

system based on changing conditions to ensure optimal performance. 

5.7 Performance Variability 

Performance variability is a significant concern in real-time systems. The performance of real-time 

tasks must be consistent and predictable to meet their timing requirements. However, 

implementing NUMA-aware strategies may introduce performance variability due to several 

factors. For example, dynamic resource management algorithms may continuously adjust the 

system based on changing workload demands and system conditions, leading to variability in task 

execution times. Similarly, NUMA-aware load balancing may distribute tasks across NUMA 

nodes based on the availability of resources, leading to variability in task execution times. It is 

important to carefully design and test the system to minimize performance variability and ensure 

that real-time tasks meet their timing requirements. 

5.8 Potential for Deadlocks 

Implementing NUMA-aware strategies may introduce the potential for deadlocks. For example, 

NUMA-aware data structures may involve complex synchronization mechanisms to ensure data 

consistency across NUMA nodes. Similarly, dynamic resource management algorithms may 

involve complex decision-making processes to allocate and deallocate resources based on 

changing conditions. These complexities may introduce the potential for deadlocks, where tasks 

are unable to progress because each task is waiting for another task to release a resource. It is 

important to carefully design and test the system to minimize the potential for deadlocks and ensure 

that tasks can progress smoothly. 

5.9 Limited Benefit for Small Workloads 

NUMA-aware strategies may provide limited benefits for small workloads that do not fully utilize 
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the available resources. For example, a small workload may not generate enough tasks to fully 

utilize the available CPU cores and memory, making it unnecessary to implement complex 

NUMA-aware strategies. Similarly, a small workload may not generate enough memory accesses 

to justify the overhead of implementing NUMA-aware data structures. It is important to carefully 

assess the characteristics of the workload and the performance goals to determine whether 

implementing NUMA-aware strategies is necessary and beneficial. 

5.10 Platform-Specific Considerations 

NUMA architectures and configurations may vary significantly across different hardware 

platforms. For example, the number of NUMA nodes, the number of CPU cores per node, the 

amount of memory per node, and the interconnection topology may vary across different 

platforms. These platform-specific considerations may affect the performance of NUMA-aware 

strategies and may require platform-specific optimizations. For example, a NUMA-aware data 

structure optimized for a platform with a small number of NUMA nodes and a large amount of 

memory per node may not perform well on a platform with a large number of NUMA nodes and 

a small amount of memory per node. It is important to carefully assess the platform-specific 

considerations and customize the NUMA-aware strategies accordingly. 

In conclusion, implementing NUMA-aware strategies for real-time workloads involves several 

caveats and challenges that need to be carefully considered. Performance variability, the potential 

for deadlocks, limited benefits for small workloads, and platform-specific considerations are 

significant challenges that may affect the performance and effectiveness of NUMA-aware 

strategies. It is important to carefully design, test, and customize the system to address these 

challenges and ensure optimal performance for real-time workloads. 

6. Conclusion 

The management of real-time workloads on systems with multiple NUMA nodes is a critical aspect 

of ensuring applications run efficiently and without interference from other processes. This paper 

has discussed various strategies for NUMA-aware resource isolation and deployment patterns, 

their use cases, and the associated caveats and challenges. 

6.1 Summary of Key Findings 

Importance of NUMA-Aware Strategies: Implementing NUMA-aware strategies is crucial for 

optimizing the performance of real-time workloads on systems with multiple NUMA nodes. These 

strategies involve strategically assigning tasks to specific CPU cores and memory regions, 

implementing NUMA-aware data structures, customizing scheduling policies, and dynamically 

managing resources based on changing conditions. 

Variety of Deployment Patterns: There are several deployment patterns that can be employed 

to achieve effective NUMA-aware resource isolation for real-time tasks, including single NUMA 

node deployment, NUMA node partitioning, memory binding and CPU pinning, NUMA-aware 

load balancing, hybrid NUMA awareness, and data locality optimization. 

Caveats and Challenges: Implementing NUMA-aware strategies involves several caveats and 

challenges, including increased complexity, resource fragmentation, dynamic workload changes, 

interference with other workloads, increased maintenance overhead, limited system understanding, 

performance variability, potential for deadlocks, limited benefits for small workloads, and 

platform-specific considerations. 

6.2 Recommendations for Implementation 

Assess Workload Characteristics: It is important to carefully assess the characteristics of the 

workload and the performance goals to determine the most appropriate NUMA-aware strategies 

and deployment patterns. 
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Consider Platform-Specific Considerations: NUMA architectures and configurations may 

vary significantly across different hardware platforms, and it is important to customize the 

NUMA- aware strategies accordingly. 

Minimize Performance Variability: It is important to carefully design and test the system to 

minimize performance variability and ensure that real-time tasks meet their timing requirements. 

Address Resource Fragmentation: It is important to carefully plan the deployment pattern and 

continuously monitor and adjust the system to minimize resource fragmentation and optimize 

resource utilization. 

Consider Maintenance Overhead: Implementing NUMA-aware strategies may increase the 

maintenance overhead, and it is important to consider the available expertise and resources. 

6.3 Future Directions 

Automated Resource Management: Developing automated resource management algorithms that 

can continuously monitor and adjust the system based on changing workload demands and system 

conditions can help address the challenges associated with dynamic workload changes and 

resource fragmentation. 

Advanced Scheduling Algorithms: Developing advanced scheduling algorithms that consider the 

NUMA topology, the characteristics of the workload, and the performance goals can help address 

the challenges associated with performance variability and interference with other workloads. 

Platform-Specific Optimizations: Developing platform-specific optimizations that consider the 

unique characteristics of different hardware platforms can help address the challenges associated 

with platform-specific considerations. 

In conclusion, implementing NUMA-aware strategies for real-time workloads is crucial for 

optimizing performance on systems with multiple NUMA nodes. It involves several caveats and 

challenges that need to be carefully considered and addressed. Future directions include 

developing automated resource management algorithms, advanced scheduling algorithms, and 

platform-specific optimizations to further enhance the performance of real-time workloads on 

systems with multiple NUMA nodes. 

ACRONYMS: 

NUMA - Non-Uniform Memory Access 

CPU - Central Processing Unit 

OS - Operating System 

RAM - Random Access Memory 

HPC - High Performance Computing 

SMP - Symmetric Multiprocessing 

UMA - Uniform Memory Access 

API - Application Programming Interface 

VM - Virtual Machine 

QoS - Quality of Service 

I/O - Input/Output 

GPU - Graphics Processing Unit 

FPGA - Field-Programmable Gate Array 

IPC - Inter-Process Communication 

ISR - Interrupt Service Routine 

RTOS - Real-Time Operating System 

SMT - Simultaneous Multithreading 

HT - Hyper-Threading 
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DMA - Direct Memory Access 

MMU - Memory Management Unit 

TLB - Translation Lookaside Buffer 

LRU - Least Recently Used 

FIFO - First In, First Out 

LIFO - Last In, First Out 

SSD - Solid State Drive 

HDD - Hard Disk Drive 

RAID - Redundant Array of Independent Disks 

NAS - Network Attached Storage 

SAN - Storage Area Network 

NIC - Network Interface Card 

TCP - Transmission Control Protocol 

UDP - User Datagram Protocol 

IP - Internet Protocol 

HTTP - HyperText Transfer Protocol 

HTTPS - HyperText Transfer Protocol Secure 

FTP - File Transfer Protocol 

SNMP - Simple Network Management Protocol 

QEMU - Quick Emulator 

KVM - Kernel-based Virtual Machine 

VMX - Virtual Machine Extensions 

SVM - Secure Virtual Machine 
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